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Abstract

In this paper we study the dynamics of a constrained generalized rigid body (the Suslov problem)
on its full phase space. We use reconstruction theory to analyze the qualitative dynamics of the
system and discuss differences with the free rigid body motion. Use is made of the so-called
quasi-periodic Floquet theory. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we analyze the dynamics, and in particular the reconstruction of the so-called
Suslov problem— a generalized rigid body with some of its body angular velocity compo-
nents set equal to zero. Theunconstrainedgeneralized rigid body problem can be shown
to be noncommutatively integrable and hence the system evolves on a torus of dimension
lower than half that of the phase space. While the reduced (Euler–Poincaré–Suslov) dy-
namics of the Suslov problem is integrable (in a nonholonomic sense) there is no analogue
of noncommutative integrability in the nonholonomic setting. The question then arises of
what is the dynamics in the full space and in particular what is the reconstruction of the
torus dynamics of the reduced equations.

We recall briefly the notions of reduction of mechanical systems. For a mechanical
system with symmetry, the process of reduction neglects the directions along the group
variables and thus provides a system with fewer degrees of freedom. In many impor-
tant examples, the reduced system is integrable. Switching back to the original system
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is called reconstruction. If the symmetry group is abelian, then the reconstruction may
be performed explicitly. The process of reconstruction in general, when the symmetry
group is nonabelian, involves integration of a linear nonautonomous differential equation
on a Lie group (see [12] for details). Even if we cannot explicitly perform the reconstruc-
tion, we still may obtain important characteristics of the motion, such as frequencies, for
instance.

The relative equilibria and relative periodic orbits of flows with symmetry have been
discussed by Ashwin and Melbourne [1]. They show that the closure of a reconstructed rel-
ative equilibrium (relative periodic orbit), if compact, is an invariant quasi-periodic torus.
A natural generalization of a relative periodic orbit is a relative quasi-periodic orbit and
below we generalize their approach to this setting. We consider a system with an integrable
quasi-periodic reduced flow. We study the reconstruction equation and show that in cer-
tain situations its solutions are quasi-periodic or may be approximated by quasi-periodic
curves in the phase space. We then apply the theory to the integrable nonholonomic Suslov
problem.

We intend in a future work to use the results obtained in this paper to study more general
problems of integrable nonholonomic systems.

2. Equations of motion of nonholonomic systems with symmetries

In this section, we briefly discuss the dynamics of nonholonomic systems with symme-
tries. We refer the reader to [3,15] for a more complete exposition.

2.1. The Lagrange–d’Alembert principle

We now describe the equations of motion for a nonholonomic system. We confine our
attention to nonholonomic constraints that are homogeneous in the velocity. Accordingly,
we consider a configuration spaceQ and a distributionD that describes these constraints.
Recall that a distributionD is a collection of linear subspaces of the tangent spaces ofQ;
we denote these spaces byDq ⊂ TqQ, one for eachq ∈ Q. A curveq(t) ∈ Q will be
said tosatisfy the constraintsif q̇(t) ∈ Dq(t) for all t. This distribution will, in general, be
nonintegrable, i.e. the constraints are, in general, nonholonomic.

Consider a LagrangianL : TQ → R. In coordinatesqi, i = 1, . . . , n, onQwith induced
coordinates(qi, q̇i ) for the tangent bundle, we writeL(qi, q̇i). The equations of motion
are given by the following Lagrange–d’Alembert principle.

Definition 2.1. The Lagrange–d’Alembert equations of motionfor the system are those
determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variationsδq(t) of the curveq(t) that satisfyδq(a) = δq(b) = 0 and
δq(t) ∈ Dq(t) for eacht wherea ≤ t ≤ b.
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This principle is supplemented by the condition that the curve itself satisfies the constraints.
Note that we take the variationbeforeimposing the constraints, i.e. we do not impose the
constraints on the family of curves defining the variation. This is well known to be important
to obtain the correct mechanical equations (see [3] for a discussion and references).

The usual arguments in the calculus of variations show that the Lagrange–d’Alembert
principle is equivalent to the equations

−δL =
(

d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0 (2.1)

for all variationsδq such thatδq ∈ Dq at each point of the underlying curveq(t). One can
of course equivalently write these equations in terms of Lagrange multipliers.

Let {ωa, a = 1, . . . , p} be a set ofp independent one forms whose vanishing describes
the constraints. Choose a local coordinate chartq = (r, s) ∈ Rn−p × Rp, which we write
asqi = (rα, sa), where 1≤ α ≤ n − p and 1≤ a ≤ p such that

ωa(q) = dsa + Aa
α(r, s) drα

for all a = 1, . . . , p. In these coordinates, the constraints are described by vectorsvi =
(vα, va)satisfyingva+Aa

αvα = 0 (a sum on repeated indices over their range is understood).
The equations of motion for the system are given by (2.1) where we choose variations

δq(t) that satisfy the constraints, i.e.,ωa(q)δq = 0, or equivalently,δsa + Aa
αδrα = 0,

whereδqi = (δrα, δsa). Substituting variations of this type, withδrα arbitrary, into (2.1)
gives(

d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
(2.2)

for all α = 1, . . . , n − p. Eqs. (2.2), combined with the constraint equations

ṡa = −Aa
αṙα (2.3)

for all a = 1, . . . , p, give the complete equations of motion of the system.
A useful way of reformulating Eqs. (2.2) is to define aconstrained Lagrangianby sub-

stituting the constraints (2.3) into the Lagrangian:

Lc(r
α, sa, ṙα) := L(rα, sa, ṙα, −Aa

α(r, s)ṙα).

The equations of motion can be written in terms of the constrained Lagrangian in the
following way, as a direct coordinate calculation shows:

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+ Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙβ,

whereBb
αβ is defined by

Bb
αβ =

(
∂Ab

α

∂rβ
−

∂Ab
β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

Ab
α

∂sa

)
.
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Geometrically, theAa
α are the coordinate expressions for the Ehresmann connection on the

tangent bundle defined by the constraints, while theBb
αβ are the corresponding curvature

terms (see [3]).

2.2. Symmetries

As we shall see shortly, symmetries play an important role in our analysis. We begin here
with just a few preliminary notions. Suppose we are given a nonholonomic system with
LagrangianL : TQ → R, and a (nonintegrable) constraint distributionD. We can then look
for a groupG that acts on the configuration spaceQ. It induces an action on the tangent
spaceTQ and so it makes sense to ask that the LagrangianL be invariant. Also, one can
ask that the distribution beinvariant in the sense that the action by a group elementg ∈ G

maps the distributionDq at the pointq ∈ Q to the distributionDgq at the pointgq. If these
properties hold, we say thatG is asymmetry group.

2.3. The geometry of nonholonomic systems with symmetry

Consider a nonholonomic system with the LagrangianL : TQ → R, the (nonintegrable)
constraint distributionD, and the symmetry groupG in the sense explained previously.

Orbits and shape space. The group orbit through a pointq, an (immersed) submanifold,
is denoted

Orb(q) := {gq|g ∈ G}.
Let g denote the Lie algebra of the Lie groupG. For an elementξ ∈ g, we write ξQ, a
vector field onQ for the corresponding infinitesimal generator, so these are also the tangent
spaces to the group orbits. Define, for eachq ∈ Q, the vector subspacegq to be the set of
Lie algebra elements ing whose infinitesimal generators evaluated atq lie in bothDq and
Tq(Orb(q)):

gq := {
ξ ∈ g|ξQ(q) ∈ Dq ∩ Tq(Orb(q))

}
.

The corresponding bundle overQ whose fiber at the pointq is given bygq , is denoted by
gD.

Reduced dynamics.Assuming that the Lagrangian and the constraint distribution are
G-invariant, we can form thereduced velocity phase space TQ/G and thereduced constraint
spaceD/G. The LagrangianL induces well defined functions, thereduced Lagrangian

l : TQ/G → R

satisfyingL = l ◦ πT Q whereπT Q : TQ → TQ/G is the projection, and theconstrained
reduced Lagrangian

lc : D/G → R,

which satisfiesL|D = lc◦πD whereπD : D→ D/G is the projection. By general consider-
ations, the Lagrange–d’Alembert equations induce well definedreduced equationsonD/G,
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i.e. the vector field on the manifoldD determined by the Lagrange–d’Alembert equations
(including the constraints) isG-invariant, and so defines a reduced vector field on the quotient
manifoldD/G. Following [5], we call these equations theLagrange–d’Alembert–Poincaré
equations.

Let a local trivialization be chosen on the principle bundleπ : Q → Q/G, with a
local representation having components denoted(r, g). Let r, an element of shape space
Q/G, have coordinates denotedrα, and letg be group variables for the fiber,G. In such a
representation, the action ofG is the left action ofG on the second factor. The coordinates
(r, g) induce the coordinates(r, ṙ, ξ) on TQ/G, whereξ = g−1ġ. The LagrangianL is
invariant under the left action ofGand so it depends ongandġ only through the combination
ξ = g−1ġ. Thus the reduced Lagrangianl is given by

l(r, ṙ, ξ) = L(r, g, ṙ, ġ).

Therefore, the full system of equations of motion consists of the following two groups:
1. The Lagrange–d’Alembert–Poincaré equation onD/G (see Theorem 2.2).
2. Thereconstruction equation

ġ = gξ.

The nonholonomic momentum in body representation.Choose aq-dependent basisea(q)

for the Lie algebra such that the firstmelements span the subspacegq in the following way.
First, one chooses, for eachr, such a basis at the identity elementg = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

For example, this could be a basis whose generators are orthonormal in the kinetic energy
metric. Now define thebody fixed basisby

ea(r, g) = Adg ea(r),

then the firstmelements will indeed span the subspacegq since the distribution is invariant.
To avoid confusion, we will make the following index and summation conventions:

1. The first batch of indices range from 1 tom corresponding to the symmetry directions
along constraint space. These indices will be denoteda, b, c, d, . . . and a summation
from 1 tom will be understood.

2. The second batch of indices range fromm + 1 to k corresponding to the symmetry
directions not aligned with the constraints. Indices for this range or for the whole range
1 tok will be denoted bya′, b′, c′, . . . and the summations will be given explicitly.

3. The indicesα, β, . . . on the shape variablesr range from 1 toσ . Thus,σ is the dimension
of the shape spaceQ/G and soσ = n− k. The summation convention for these indices
will be understood.

Assume that the Lagrangian has the form kinetic energy minus potential energy, and that
the constraints and the orbit directions span the entire tangent space to the configuration
space:

Dq + Tq(Orb(q)) = TqQ.
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Then it is possible to introduce a new Lie algebra variableΩ called thebody angular velocity
such that
1. Ω = Aṙ + ξ , where the operatorA is called thenonholonomic connection.
2. The constraints are given byΩ ∈ span{e1(r), . . . , em(r)} or Ωm+1 = · · · = Ωk = 0.
3. The reduced Lagrangian in the variables(r, ṙ, Ω) becomes

1

2
gαβ ṙαṙβ + 1

2
IacΩ

aΩc +
k∑

a′=m+1

(
la′α − la′c′Ac′

α

)
Ωa′

ṙα

+ 1

2

k∑
a′,c′=m+1

la′c′Ωa′
Ωc′ − V. (2.4)

In the above,gαβ are coefficients of the kinetic energy metric induced on the manifold
Q/G, Iac are components of thelocked inertia tensorrelative togD, I(q) : gD → (

gD
)∗

defined by

〈I(q)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ gq,

where〈〈·, ·〉〉 is the kinetic energy metric, and

la′α = ∂2l

∂ξa′
∂ṙα

, la′c′ = ∂2l

∂ξa′
∂ξc′ .

We remark that this choice ofΩ eliminates the terms proportional toΩaṙα andΩaΩa′
in

(2.4). The constrained reduced Lagrangian becomes especially simple in variables(r, ṙ, Ω):

lc = 1
2gαβ ṙαṙβ + 1

2IacΩ
aΩc − V.

Thenonholonomic momentum in body representationis defined by

pa = ∂l

∂Ωa
= ∂lc

∂Ωa
.

Notice that the nonholonomic momentum may be viewed as a collection of components of
the ordinary momentum map along the constraint directions.

The Lagrange–d’Alembert–Poincaré equations.As in [3], the reduced equations of mo-
tion are given by the next theorem.

Theorem 2.2. The following nonholonomic Lagrange–d’Alembert–Poincaré equations hold
for each1 ≤ α ≤ σ and1 ≤ b ≤ m:

d

dt

∂lc

∂ṙα
− ∂lc

∂rα
= − ∂I cd

∂rα
pcpd −Dc

bαI bdpcpd − Bc
αβpcṙ

β −DβαbI
bcpcṙ

β

−Kαβγ ṙβ ṙγ , (2.5)

d

dt
pb = Cc

abI
adpcpd +Dc

bαpcṙ
α +Dαβbṙ

αṙβ . (2.6)

Here lc(r
α, ṙα, pa) is the constrained Lagrangian;rα, 1 ≤ α ≤ σ , are coordinates in

the shape space;pa , 1 ≤ a ≤ m, are components of the momentum map in the body
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representation;I ad are the components of the inverse locked inertia tensor;Ba
αβ are the

local coordinates of the curvatureB of the nonholonomic connectionA; the coefficients
Dc

bα,Dαβb,Kαβγ are given by the formulae

Dc
bα =

k∑
a′=1

− Cc
a′bA

a′
α + γ c

bα +
k∑

a′=m+1

λa′αCa′
abI

ac,

Dαβb =
k∑

a′=m+1

λa′α

(
γ a′
bβ −

k∑
b′=1

Ca′
b′bA

b′
β

)
, Kαβγ =

k∑
a′=1

λa′γB
a′
αβ,

where

λa′α = la′α −
k∑

b′=1

la′b′Ab′
α := ∂l

∂ξa′
∂ṙα

−
k∑

b′=1

∂l

∂ξa′
∂ξb′A

b′
α

for a′ = m + 1, . . . , k. HereCb′
a′c′ are the structure constants of the Lie algebra defined by

[ea′ , ec′ ] = Cb′
a′c′eb′ , a′, b′, c′ = 1, . . . , k; the coefficientsγ c′

bα are defined by

∂eb

∂rα
=

k∑
c′=1

γ c′
bαec′ .

We shall discuss in detail the nonholonomic system of interest here, the Suslov problem,
after a general discussion of relative equilibria and reconstruction theory.

3. Relative equilibria and relative periodic orbits

In this section we discuss how the relative equilibria and relative periodic orbits of flows
with symmetries are related to maximal tori of the symmetry group. We follow the exposition
of [1].

Consider a vector fieldX(x) on a manifoldM. LetGbe a Lie group acting on the manifold
M. For simplicity we assume that the orbit spaceM/G is a smooth manifold. Suppose that
the vector fieldX(x) is G-invariant, and that the flowFt : M → M of this vector field is
complete. The flowFt induces areduced flowφt : M/G → M/G, φt = π ◦ Ft , where
π : M → M/G is the projection. We have the following definition [13]:

Definition 3.1. An orbit γ (t) is called arelative equilibrium(a relative periodic orbit) if
the orbitπ ◦ γ (t) of the reduced flow is an equilibrium (a periodic orbit).

Remark. All orbits γ (t) generated by the same relative equilibrium (relative periodic
orbit) belong to the same group orbit

Orb(π ◦ γ (t)) = {Orb(x)|x ∈ π ◦ γ (t)} ,

which sometimes is also referred to as a relative equilibrium (relative periodic orbit respec-
tively) (see[1]).
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Suppose that the groupG is connected. The following two theorems from [1] explain
what the reconstructed relative equilibria and relative periodic orbits are. Similar results
may be found in [7,11,13].

Theorem 3.2(Ashwin and Melbourne [1]).Suppose that the relative equilibriumxe has
isotropy subgroup6.Then the group orbit throughxe is foliated by toriT p,p ≤ rank(N(6)/

6), or by copies ofR.

In this theorem,N(6) denotes the normalizer of6. Next, consider a system with a relative
periodic orbitγ (t). Let x0 = γ (0) and let6 be the isotropy ofx0.

Theorem 3.3(Ashwin and Melbourne [1]).A group orbit through the relative periodic
orbit is foliated by toriT p, p ≤ rank(N(6)/6)+1,with irrational tori flow or by copies
ofR with unbounded linear flow.

In the above theorems, the upper bound for the dimension of the invariant tori is attained
generically. If the isotropy6 is a trivial subgroup ofG, thenp ≤ rankG (p ≤ rankG + 1,
respectively).

4. Relative quasi-periodic orbits

In this section we discuss the reconstruction process applied to relative quasi-periodic
orbits.

Systems with quasi-periodic reduced dynamics.Suppose that the reduced flow of the
mechanical system with symmetry groupG is quasi-periodic, i.e. the reduced phase space
is foliated bym-dimensional tori and the flow on these tori is

φ̇1 = ω1, . . . , φ̇m = ωm,

where the frequenciesωj are incommensurate (i.e. are not rationally related). In this case
the Lie algebra elementξ(t) in the reconstruction equation

ġ = gξ(t) (4.1)

is a quasi-periodic function, i.e.

ξ(t) = 4(ω1t, . . . , ωmt)

for an appropriate function4 : T m → g. If the symmetry group is abelian (and compact),
then this equation is explicitly solvable and the generic motion is quasi-periodic on(m +
dimG)-dimensional tori.

Suppose that the reconstruction equation isreducible, i.e. there exists a substitutiong =
ha(t), wherea(t) is a quasi-periodic group element such that the Lie algebra element

η = a(t)ξ(t)a−1(t) − ȧ(t)a−1(t)

is time-independent.
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Theorem 4.1. If the reconstruction equation is reducible, then the trajectories(r(t), g(t))

of the original system are quasi-periodic.

Proof. The reconstruction equation after the substitutiong = ha(t) becomes

ḣ = hη.

Sinceη is a fixed Lie algebra element, the solutionsh(t) = h0 exp(tη) are quasi-periodic.
By Theorem 3.2 for a genericη, h(t) is a rank(N(6)/6)-dimensional torus. The cor-
responding trajectory of the system(r(t), g(t)) is thus quasi-periodic. Generically, it has
(rank(N(6)/6)+m) frequencies, wheremis the number of frequencies of the quasi-periodic
Lie algebra elementξ(t). If the groupG acts on the phase space without fixed points, then
the trajectory(r(t), g(t)) has(rankG + m) frequencies. �

The main question therefore is whether the equationġ = gξ(t) is reducible. Suppose
that the groupG is a matrix group, then Eq. (4.1) is reducible if and only if the linear system
of differential equations

ẋ = ξT(t)x

is reducible.
Quasi-periodic Floquet theory.Consider a system of linear differential equations

ẋ = A(t)x. (4.2)

If the matrixA(t) is periodic, then the Floquet theory states that Eq. (4.2) is reducible. This
means that there exists a periodic linear substitutionx = C(t)y such that Eq. (4.2) becomes

ẏ = By,

whereB = C−1(t)A(t)C(t) − C−1(t)Ċ(t) is aconstantmatrix.
However, if the matrixA(t) is quasi-periodic, system (4.2) may be irreducible (see

[9] and references therein). We remark here that the conditions for reducibility are ei-
ther “nonconstructive” (like those of [9]), or too restrictive. For instance, the reducibility
conditions in [4] require that the eigenvalues of the constant part of the matrixA satisfy
certain conditions. These conditions do not hold for many interesting mechanical examples,
such as the Suslov problem.

Effective reducibility.The following theorem (see [8]) states that the quasi-periodic part of
the matrixA(t) can be made exponentially small. As before,ω1, . . . , ωm are the frequencies
of the quasi-periodic matrix.

Theorem 4.2. Consider the equatioṅx = (A+ εQ(t, ε))x, |ε| < ε0, x ∈ Rd , where we
have the following hypotheses:
1. A is a constantd × d matrix with distinct eigenvaluesλ1, . . . , λd .
2. Q(t, ε) is an analytic quasi-periodic matrix on a strip of widthρ with ‖Q(·, ε)‖ρ ≤ q

for all |ε| ≤ ε0, for someω ∈ Rm, whereq, ρ > 0.
3. The vectorω satisfies the diophantine conditions
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|λj − λl + i(k, ω)| ≥ c

|k|γ
for anyk ∈ Zm\0and for anyj, l ∈ {1, . . . , d} for some constantsc > 0andγ > m−1.
As usual,|k| = |k1| + · · · + |km|.

Then there exist positive constantsε∗, a∗, r∗, and µ such that for allε, |ε| ≤ ε∗, the
initial equation can be transformed into

ẏ = (A∗(ε) + εR∗(t, ε))y,

where
1. A∗ is a constant matrix with|A∗(ε) − A|∞ ≤ a∗|ε| and
2. R∗(·, ε) is an analytic quasi-periodic function on a strip of widthρ with ‖R∗(·, ε)‖ρ ≤

r∗ exp(−(µ/|ε|)1/γ δ) for anyδ ∈ (0, ρ].
Furthermore, the quasi-periodic change of variables that performs this transformation is
also analytic on a strip of widthρ.

So, if ξ(t) = A + εQ(t, ε), then the reconstruction equation reduces to

ḣ = h(A∗(ε) + εR∗)

with an exponentially small quasi-periodic term. Therefore, the flow determined by the
reconstruction equation may be approximated by a quasi-periodic flow on a time interval
of length∼ exp(1/ε). We remark that this is a considerably longer time span than the time
span of order 1/ε that would be expected from standard perturbation theory arguments.

In the example below (the Suslov problem), the constant matrixA has multiple zero
eigenvalues. Theorem 4.2 is valid for multiple eigenvalues too, but the exponent ofε in the
expression forR∗ is slightly worse (see [8]).

5. The Suslov problem

In this section we study the constrained dynamics of the Euler top. The constraints require
that some of the components of the body angular velocity are equal to zero.

5.1. The classical Suslov problem

The Suslov problem is an Euler top with a nonholonomic constraint〈a, Ω〉 = 0, whereΩ
is the body angular velocity anda is a vector fixed in body. Here〈·, ·〉 stands for the standard
metric inR3. The configuration space of this system is the groupSO(3). The Lagrangian
(the kinetic energy) and the constraint are invariant under the left action ofSO(3) on the
configuration space.

The Suslov problem belongs to a class of nonholonomic systems with no shape space.
The Lagrange–d’Alembert–Poincaré equations (see Theorem 2.2) for such systems reduce
to the momentum equation

ṗb = Cc
abI

adpcpd, (5.1)
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wherepa are the components of the nonholonomic momentum relative to the body frame,
I ad are the components of the inverse inertia tensor, andCc

ab are the structure constants
of g. Eq. (5.1) are not in general Euler–Poincaré equations because the subspacegD =
{Ω|〈a, Ω〉 = 0} is not necessarily a subalgebra. Instead, we may view (5.1) as Euler–Poincaré
equations restricted to a subspace

(
gD
)∗

of the Lie coalgebrag∗. Following Fedorov and
Kozlov we call these the Euler–Poincaré–Suslov equations.

Choosee3 = a/|a| as the third vector of the body frame. Then the constraint becomes
Ω3 = 0. Pick two independent vectorse1 ande2 that are orthogonal toe3 in the kinetic
energy metric.These vectorse1, e2, ande3 are not orthogonalrelative to the standard
metric inso(3) = R3 unlesse3 spans an eigenspace of the inertia tensor. Consequently, the
structure constantsC1

12 andC2
12 are not necessarily equal to zero. In the framee1, e2, e3 the

componentsI13 andI23 of the inertia tensor are equal to zero. Therefore

p3 = ∂lc

∂Ω3
= I33Ω

3 = 0

and Eqs. (5.1) become

ṗ1 =
(
C1

21p1 + C2
21p2

) (
I12p1 + I22p2

)
, (5.2)

ṗ2 =
(
C1

12p1 + C2
12p2

) (
I11p1 + I12p2

)
. (5.3)

These equation are equivalent to the equations in [6].
It is known that Eqs. (5.2) and (5.3) are not integrable unlesse3 is an eigenvector of the

locked inertia tensor (see [10] for details). In this last caseIe3 = I3e3 and we may choose
the two remaining eigenvectors to bee1 ande2 as defined above, so that the basise1, e2, e3

is orthogonal with respect to both the standard and the kinetic energy metrics. In this basis,
C1

12 = C2
12 = 0. Hence in the integrable case Eqs. (5.2) and (5.3) become

ṗ1 = 0, ṗ2 = 0.

Thus all the solutions of the reduced system are relative equilibria. By Theorem 3.2, almost
all reconstructed motions of the classical Suslov problem are periodic because the rank of
the groupSO(3) is equal to one.

5.2. The n-dimensional Suslov problem

Fedorov and Kozlov [6] considers ann-dimensional Suslov problem, i.e. they consider
the motion of ann-dimensional rigid body with a diagonal inertia tensorIij = δij Ij ,
I1 > I2 > · · · > In, subject to the constraintsΩij = 0, i, j > 2, whereΩ ∈ so(n) is the
body angular velocity. This system isSO(n)-invariant, where the groupSO(n) acts on the
configuration space by left shifts.

Integrability of the reduced flow.Fedorov and Kozlov [6] prove that the reduced system
onso(n) hasn − 1 quadratic integrals

F0(Ω) = h/2, F1(Ω) = c1, . . . , Fn−2(Ω) = cn−2,
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whereF0(Ω) is the positive-definite energy integral. The common level surface of these
integrals is diffeomorphic to the disjoint union of(n−2)-dimensional tori ifh, c1, . . . , cn−2

are all positive and satisfy the condition

c1

I2 − I3
+ · · · + cn−2

I2 − In

< h. (5.4)

The flow on these tori in the appropriate angular coordinates is governed by the equations

dφ1

dτ
= ω1, . . . ,

dφn−2

dτ
= ωn−2, (5.5)

whereτ is a new independent variable introduced by dτ = Ω12 dt . The solutions of Eqs.
(5.5) are quasi-periodic motions on tori. The reduced Suslov problem is therefore integrable.
The frequenciesω1, . . . , ωn−2 are the same for all the tori and depend only on the values
of I1, . . . , In. Explicitly,

ωs =
√

f (Is+2), f (z) = (I1 − z)(I2 − z)

(I1 + z)(I2 + z)
.

The functionf (z) is decreasing on the interval [0, I2] and takes values between 0 and 1.
Therefore the set of(I1, . . . , In) for which the diophantine conditions (5.7) fail is of zero
measure.

The nonzero components of the body angular velocity are

Ω12 = 1

I1 + I2

√√√√h −
n−2∑
s=1

(
cs

I2 − Is+2
sin2φs + cs

I1 − Is+2
cos2φs

)
,

Ω1,s+2 =
√

cs

(I1 + Is+2)(I2 − Is+2)
sinφs,

Ω2,s+2 =
√

cs

(I2 + Is+2)(I1 − Is+2)
cosφs.

If the trajectories are closed (periodic) on one torus, then they are closed on the rest of
the tori as well. If all the trajectories are closed, we can view the reduced dynamics as
a collection of relative periodic orbits organized in invariant(n − 2)-dimensional tori. By
Theorem 3.3 each relative periodic orbit gives rise to the(r +1)-dimensional quasi-periodic
invariant torus inD. Herer ≤ rank(SO(n)). Since the relative periodic orbits are organized
in (n−2)-dimensional tori, the invariant manifolds are(r +n−2)-dimensional tori foliated
by quasi-periodic(r + 1)-dimensional tori.

Quasi-periodic reconstruction.Assume that the conditions given in the previous para-
graph hold. Then the reduced dynamics is quasi-periodic on(n−2)-dimensional tori in the
Lie algebraso(n). The equations of motion of the Suslov problem consist of the reduced
system on the algebraso(n) (this system is integrable) coupled with the reconstruction
equationġ = gΩ. Recall that the frequenciesω1, . . . , ωn−2 are completely determined by
the inertia tensor and are the same for all invariant tori of the reduced system.

To see what the motions in the full phase space are, we need to perform the reconstruction,
i.e. to solve the equation
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ġ = gΩ(t).

The solutions of the reduced system become simpler if we introduce a new independent
variableτ by dτ = Ω12 dt . The reconstruction equation becomes

dg

dτ
= gξ(τ), (5.6)

whereξ is a skew-symmetric matrix with components

ξij = Ωij

Ω12
.

In particular,ξ12 = −ξ21 = 1. SinceΩij are quasi-periodic functions ofτ , the matrixξ(τ )

is quasi-periodic (with frequenciesω1, . . . , ωn−2).
Reducibility of the reconstruction equation and symmetries.Here we discuss reducibility

of the reconstruction Eq. (5.6) and symmetries of the generalized Suslov problem. Since
the reduced flow, given by Eq. (5.5), is quasi-periodic, the reduced Suslov problem is
T (n−2)-invariant. The action is given by

T (n−2) 3 (α1, . . . , αn−2) 7→ (φ1 + α1, . . . , φn−2 + αn−2).

Theorem 5.1. The reconstruction equation (5.6) is reducible iff the Suslov problem is
SO(n) × T (n−2)-invariant.

Proof. Recall that the equations of motion are

dF

dτ
= 0,

dφ

dτ
= ω,

dg

dτ
= gξ(τ),

whereF = (F0, . . . , Fn−2) are the integrals of the reduced Suslov problem. If this system
is SO(n) × T (n−2)-invariant, then the reduced dynamics consists of relative equilibriaF =
const. The reconstructed motions are therefore quasi-periodic. Since the groupSO(n) acts
on itself without fixed points, generic reconstructed motions are represented by the flow on
the maximal tori ofSO(n) × T (n−2). The dimension of these tori equals rank(SO(n)) +
(n − 2). In particular, there exist coordinates onSO(n) × T (n−2) in which theSO(n) ×
T (n−2)-reconstruction equations are

dφ

dτ
= ω,

dh

dτ
= hξ,

whereξ is afixedelement ofso(n). Thus, theSO(n)-reconstruction equation is reducible.
Suppose now that the equation

dg

dτ
= gξ(τ)

is reducible. Then we can choose new coordinatesh on the groupSO(n) such that the
reconstruction equation becomes

dh

dτ
= hξ, ξ = const.
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The equations of motion thus become

dF

dτ
= 0,

dφ

dτ
= ω,

dh

dτ
= hξ.

These equations areSO(n) × T (n−2)-invariant. �

Remark. Of course the inertia tensor contains the complete information about the dynam-
ics of the Suslov problem. In particular, it determines in principle the SO(n) × T (n−2)-
invariance/reducibility of the reconstruction equation. However, there are no adequate
methods that allow one to tell when this reducibility occurs. To work around this difficulty
we use below the effective reducibility approach. It is interesting to notice that the pres-
ence of the symplectic structure in the theory of the unconstrained rigid body allows one
to construct a bigger symmetry group and to establish reducibility of the reconstruction
equation. The reduced dynamics consists of the relative equilibria only. This is why the
unconstrained n-dimensional rigid body is an integrable system. See[14], and for example,
[2] for details and theory of noncommutative integrability. The absence of a symplectic
structure and a suitable notion of commuting integrals in nonholonomic mechanics prevent
us from showing that the Suslov problem is SO(n) × T (n−2) -invariant.

Effective reducibility and reconstruction.We consider two cases when the effective re-
ducibility approach may be used.

Case 1.Here we consider the motions with one dominant component of the angular velocity.
Putcs = εbs, s = 1, . . . , n− 2. In this case|Ωl,s+2| � |Ω12|, l = 1, 2, s = 1, . . . , n− 2.
Then the reconstruction equation takes the form

dg

dτ
= g(A + εQ(τ, ε)),

whereA is a constant skew-symmetric matrix with entriesA12 = −A21 = 1 andAij = 0
for all other pairs of indicesi andj . Assume that the following diophantine conditions hold
for some constantsc > 0 andγ > n − 3:

|l + i(k, ω)| ≥ c

|k|γ , l = 0, 1, 2. (5.7)

As we mentioned before, this is true for a generic inertia tensor. Even if the reconstruc-
tion equation is not reducible, we can apply Theorem 4.2. Condition 2 of this theorem
follows from (5.4). We conclude thus that the trajectories of the Suslov problem may be
approximated by quasi-periodic curves on the time interval of length∼ exp(1/ε).

Case 2.Now consider the case whencs = εbs, s = 2, . . . , n − 2, i.e. we have motions
with three dominant components,Ω12, Ω13, andΩ23, of the angular velocity. Then the
reconstruction equation is of the form

dg

dτ
= g(B(t) + εQ(τ, ε)),
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whereB(t) is a 2π/ω1-periodic function andQ(τ, ε) is a quasi-periodic function. We first
find a periodic substitutionk = ga(t) which transforms the equation dg/dτ = gB(t) into
dk/dτ = kB. The reconstruction equation thus becomes

dk

dτ
= k(B + εQ̃(τ, ε)), B = const.

Assume that the appropriate diophantine conditions hold. Then, as above, we find a quasi-
periodic substitutionh = kb(t) which makes quasi-periodic terms in the reconstruction
equation exponentially small inε. Thus, in the case of three dominant components of the
angular velocity we observe the same behavior as in the case of one dominant component.
Summarizing, we have:

Theorem 5.2. Consider the n-dimensional Suslov problem with quasi-periodic reduced
flow. In the case of one or three dominant components of the angular velocity, the dynamics
of the n-dimensional Suslov problem may be approximated by quasi-periodic dynamics on
the time interval of length∼ exp(1/ε).
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